

## **HexAir Turbines**

By Lauren McLaughlin-Kelly, President Sarah Morey, Vice President Paige Smith, Researcher Eric Lin, Researcher

### **Project Objectives**

We want to create a turbine that would produce the maximum power output with the least amount of friction and resistance, while creating a design that has never been used before. To achieve this, we would need to do research and apply the fundamentals of physics to find the best possible options. Then we would design different versions of wind turbines, construct the turbine, test, and redesign our turbine to produce the most optimal results.



### **Generation of Alternatives**

- Orientation (horizontal/vertical)
- Number of blades
- Number of generators
- Blade Orientation/Pitch system
- Blade size (length, width, height)
- Blade material
- Blade weight
- Blade shape
- Rotor size
- Gear ratio
- Magnets

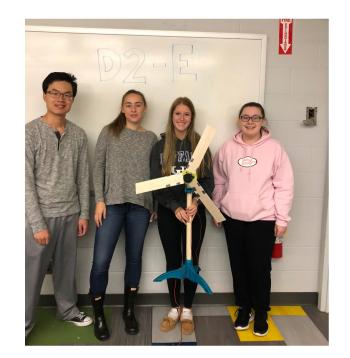


### **Comparison of Alternatives**

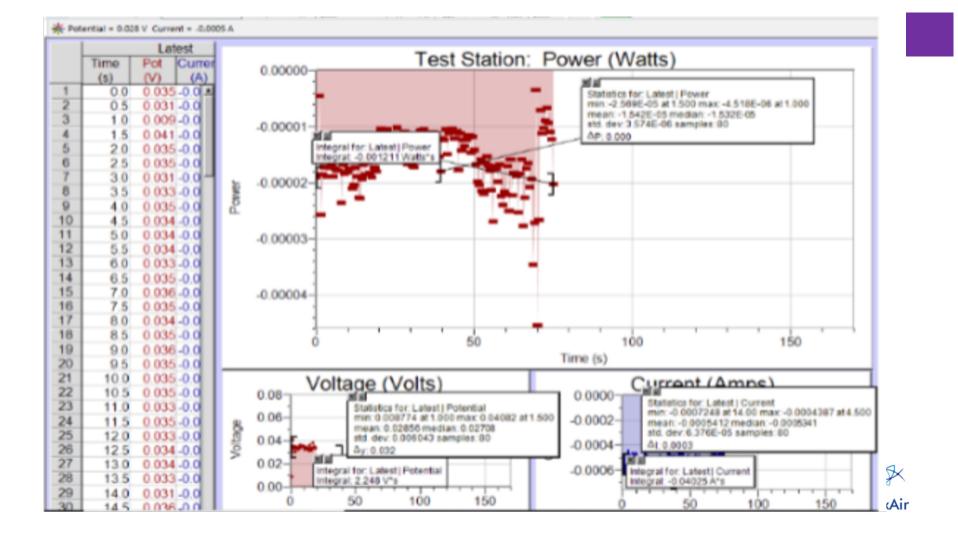
| Design Factor             | Design Factor<br>Testable in Model | Hypothesis from<br>Research             | Hypothesis from Physics Analysis                                                                             |
|---------------------------|------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Number of blades          | Yes                                | 6                                       | Blade Solidity= c/s                                                                                          |
| Curved/straight blades    | Yes                                | Curved                                  | Tangential force, Angle of Attack,<br>Laminar flow, and Bernoulli's<br>Equation, Newtons 3 <sup>rd</sup> Law |
| Sideways nacelle          | Yes                                | Yes                                     | Gravity, Friction                                                                                            |
| Number of gears/Gear size | Yes                                | 2 gears: 8-tooth gear,<br>32-tooth gear | Torque, Force                                                                                                |
| Number of motors          | Yes                                | 1                                       | Electromagnetism                                                                                             |
| Blade angle               | Yes                                | 10 Degrees                              | Angle of Attack                                                                                              |
| Blade material            | Yes                                | As light as possible,<br>Basal Wood     | Newton's 3rd<br>Law HexAir                                                                                   |
| Hexagonal shape?          | Yes                                | Increased stability                     | Equilibrium                                                                                                  |

### Modeling of System Performance: Initial Build

Initial Turbine Features:


- 3 balsa wood blades
- Flat blades
- 2 gears (8-tooth, 32-tooth)
- 1 motor
- Multimeter set at 20 to measure voltage and current
- LED bulb




### Modeling of System Performance: Initial Build

Horizontal Turbine

- Max Voltage: .041 Volts
- Max Current: .02 Amperes
- Max Power: .00082 Watts
- Cut-in time: 4 seconds
- Run-out time: 15 seconds
- Bulb used: LED
- Was bulb lit up?: No



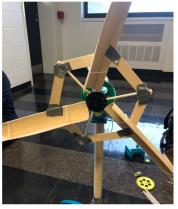




### Modeling of System Performance: Experiments

- Experiment 1: Vertical, 3 flat blades: .1 volts produced
- Experiment 2: Vertical, 6 flat blades: .3 volts produced
- Experiment 3: Vertical, 3 curved blades: .2 volts produced
- Experiment 4: Vertical, 4 curved blades: 1.3 volts produced
- Experiment 5: Vertical, curved blades with cardboard base: .3 volts produced
- Experiment 6: Vertical, curved blades with wooden base: .4 volts produced
- Experiment 7: Vertical, curved blades with wooden base/top and wooden axle: .4 volts produced
- Experiment 8: Vertical, curved blades at 0 degrees: .2 volts produced
- Experiment 9: Vertical, curved blades at 10 degrees: .4 volts produced




### Modeling of System Performance: Experiments

- Experiment 10: Horizontal turbine, with curved blades and 3 weights: 1.4 volts produced
- Experiment 11: Horizontal turbine, curved blades and unweighted: .9 volts produced
- Experiment 12: Vertical, weighted blades, non weighted axle: 1.3 volts produced
- Experiment 13: Vertical, non-weighted blades, weighted axle: 1.6 volts produced



### Modeling of System Performance: Experiments

- Voltage was main system tested
- Unproductive to test every single system due to time constraint
- Many of the tests to show why certain factors do not work with vertical turbines
- Smaller number of tests done to see how that factor affected the power output of the turbine



# Modeling of System Performance: Final Improved Design

- Vertical vs Horizontal turbine
- Curved Polyurethane Balsa Wood Blades
- Hexagonal base /top
- Wooden axle
- Sideways nacelle



HexAi

## Modeling of System Performance: Final Improved Design

- Curved Polyurethane Balsa Wood Blades
- Hexagonal Base/Top
- Wooden Axle
- Sideways Nacelle









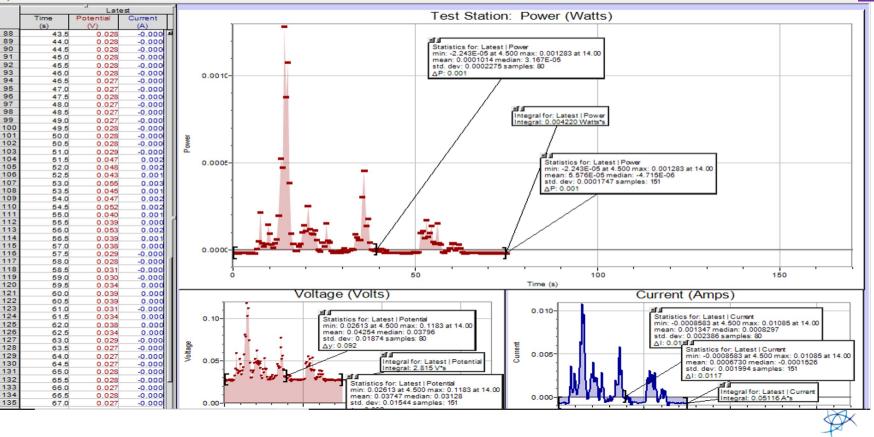
### Performance at Final Testing

- Power available from wind: 0.35286298 kW (kgm^2/s^3)
- Maximum fraction of the power that can be captured in the blades: 0.59259259
- Efficiency of wind turbine:
  0.2165%
- Speed transfer:)
  v=4.4196m/sec

- Power available from wind:  $P = (.5) P (\pi cr^2) v^3$   $P = (.5) (1.209 \text{ Kg/m}^3) (\pi (0.1524 \text{ m})^2) (2\text{m/s})^3 = [0.3528(6298 \text{ KN} (\text{Kg} \text{m}^2/\text{s}^3)]$ - Maximum fraction of the power that can be captured in the bloddes:  $F_{P} = .5\left(1 - \left(\frac{V_{2}}{V_{1}}\right)^{2}\right)\left(1 + \frac{V_{2}}{V_{1}}\right) \xrightarrow{replace} :F_{P} = (.5)\left(1 - R^{2}\right)(1 + R)$  $\frac{-1}{2}R^{3} - \frac{1}{2}R^{2} + \frac{1}{2}R + \frac{1}{2}$  $2 2 2 2 3 - 5(1-(-1)^{2}/(1+(-1)) = 0$ -3 R<sup>2</sup> - 2R + 1 = 0  $(-5(1-(-1)^{2}/(1+(-1))) = 0$ -5  $(1-(-5)^{2}/(1+5)) = (0.59259259) = \frac{19}{27}$ - Efficiency of wind torbine : R=-b=1 b2-4ac a=-3 2a. b= -2 0.001283/0.59259259 ×100 C=1 0.2165 %  $R = -(-2) + \sqrt{(-2)^2 - 4(-3)}$ - Speed Transfer: V=rW V= (0.1524 m) (29 rpm) V=4.4190 m/sec R= = HexAir

### **Final Testing**

- Max Voltage: 0.1183 Volts
- Max Current: 0.01085 Amperes
- Max Power: 0.001283 Watts
- Energy Generated in 75 seconds: 0.00422 Watts
- Cut-in time: 6.5 Seconds
- Run-our time: 3 Seconds
- Bulb used: Incandescent
- Was bulb lit up?: Yes
- Estimated Blade RPM: 29 rpm




### 🗋 🚘 📮 🚑 | 💨 Page 1 🛛 🗸 🗁 | 🕨 📑 | 🔝 🔍 🔍 🌿 🎢 🕍 🎲 💭 🛛 🖋

Collect

HexAir

\* Potential = 0.028 V Current = -0.0006 A



## Engineering Recommendations: Interpretations of Results

Successful results:

- Creating an innovative and unique design
- Produced power
- Lit bulb

Unsuccessful results:

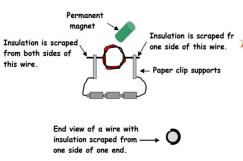
• Did not produce a large amount of power





### **Engineering Recommendations: Future Research**

-With further funding and time, implementing research / testing with magnets


-Using electrostatic forces of the northern and southern poles. When the forces are attracting and repelling each other, assist in the rotation and improve performance of the wind turbine. Spinning a magnet with a magnet


Benefits of Neodymium Magnets in wind turbines:

- Reliable
- Low-maintenance
- Cost-efficient
- Increase power output
- Less energy loss (friction)

Most promising: Imbalanced System (Spin Alignment System)



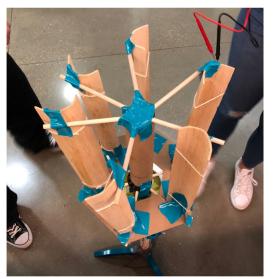




> The magnet spins until its south end is aligned with the north end of the magnet in your hand.

If you remove the magnet in your hand just as the south pole of the spinning magnet approaches it, the spinning magnet's motion causes it to continue to spin.

 $\succ$  If you flip and replace the magnet in your hand at the


### Engineering Recommendations: Future Research

3D Printing:

-Inconsistent angles due to curving blades by hand

-With more funding, 3D printed blades (with current funding this was an unattainable goal, around \$800)

- Curved
- Ligheight
- Durable





Maglev: inspiration for vertical turbine with magnetic motor



